

 Navigation

 	
 index

 	
 next |

 	txcas 0.1 documentation

Welcome to txcas’s documentation!

Contents:

	Overview
	Features

	Why Another CAS Server?

	Installation
	Clone the source from GitHub

	Configure the Python environment

	Create configuration files

	Start the service

	Demonstration
	Take The CAS Tour

	Experimenting With the Demonstration

	Configuration
	CAS

	Plugins

	Sections Specific to Plugins

	Endpoints
	TLS Endpoint Options

	Authentication
	Authentication Phases

	User Realms

	Ticket Stores
	Options Common to All Ticket Stores

	Interaction With Service Managers

	Service Managers

	View Providers

	Plugin Troubleshooting

	Development
	Basic File Layout and Script Requirements

	Kinds of Plugins

	Unit Tests

	Glossary

Indices and tables

	Index

	Search Page

 Copyright 2014, Carl Waldbieser.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	txcas 0.1 documentation

Overview

The Central Authentication Service [http://jasig.github.io/cas/] (CAS) is a protocol that allows a single
web site to act as the authentication broker for service providers.
Twisted [https://twistedmatrix.com/trac/] is an asyncronous networking library for the Python [https://www.python.org/] programming
language. Since prefixing project names with “twisted” is somewhat long-ish,
Twisted Python projects tend toward using the “tx” prefix. So “txcas” is an
implementation of a CAS server using the Twisted Python library.

Features

	Implements the CAS Protocol v3.0 required sections (1-3).

	Easy to start/stop service that listens and responds to incoming requests.
No external web server or web application container required.

	Open source Python code making heavy use of the Twisted networking library.

	Flexible plugin architecture, allowing customization of major architectural
components.

	Plugins for Authentication (file, unix, LDAP, client x509), User Realms
(basic, LDAP), Ticket Stores (in-memory, CouchDB), Service Managers (JSON),
and View Providers (Jinja2 templates).

	Simple configuration.

	Runs on a Raspberry Pi [http://www.raspberrypi.org/]!

Why Another CAS Server?

The Apereo Foundation [http://www.apereo.org/] already maintains the reference CAS server
implementation. It is robust, well tested, reliable, flexible
software that has a vibrant community behind it. So why another server
implementation?

Ultimately, the reason this project exists is that I unapologetically love
programming in Python! It has been said the Python “fits your brain”, and
in my case, I most certainly agree. I am also a big fan of the Twisted
networking library and asynchronous I/O.

I recognize many of the benefits of the Java programming language [https://www.java.com] and
its associated tool chain, but it is not my software environment
of choice. I found a basic CAS server written in Python on GitHub. I
forked it, and started this project.

Goals

My goals for this project are as follows:

	Produce a working, production quality CAS server that implements all the required
features of the CAS protocol.

	Provide a flexible and customizable plugin architecture. Don’t try to include
every option in the core server.

	Keep the code base simple to learn and understand.

	Keep the administration of the service simple to use.

 Copyright 2014, Carl Waldbieser.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	txcas 0.1 documentation

Installation

	Clone the source from GitHub

	Configure the Python environment

	Create configuration files

	Start the service

Clone the source from GitHub

Use the standard git clone command:

$ git clone 'https://github.com/cwaldbieser/txcas.git'

Configure the Python environment

If you are new to Python [https://www.python.org/], this will probably be the most difficult step.
txcas is tested and run on Python v2.7. Older versions (e.g. v2.6)
may work, but are not recommended.

You can download Python [https://www.python.org/downloads/] from the official web site. If you are running
some flavor of Linux or BSD, your distribution’s package manager may provide
a pre-packaged Python. The official documentation has a helpful
Setup and Usage [https://docs.python.org/2/using/index.html] section.

Note

Attention Windows users! In addition to the Python installer available
from the official web site, there are some alternative bundles. The
ActivePython installer [http://www.activestate.com/activepython] is a great choice for Python on Windows!

Fufilling Dependencies

Warning

Fufilling dependencies tends to be where the real pain points in any
software installation are felt. I apologize in advance. The good
news is that you probably only have to do this once to set up a
development environment. If you set up production environments from
source, make sure you take good notes if this step isn’t a smooth
ride.

The requirements.txt file lists all the Python dependencies for txcas.
Some Python modules may require dependencies on external system libraries which
may vary depending on your platform. Installing all the dependencies manually
is not a fun process.

While there is no silver bullet, a lot of work has been done to make satisfying
dependencies a bit more civilized. Your package manager may provide python
modules that you can yum install or apt-get install.

I recommend installing dependencies in a Python virtual environment. This
keeps all your dependencies isolated from your system Python and any other
Python environments you have. There is a handy guide to virtual
environments [http://docs.python-guide.org/en/latest/dev/virtualenvs/].

Once I have a virtual environment created and activated, I use pip [http://pip.readthedocs.org/en/latest/index.html] to
install the requirements listed in requirements.txt.

$ pip install -r ./requirements.txt

Ideally, you can sit back and relax while the packages are downloaded from
the Python Package Index [https://pypi.python.org/pypi] (PyPi) and installed as if by magic. In practice,
sometimes there are unmet dependencies external to Python that pop up. You
may not have the traditional build tools for your platform installed. This
will cause issues if one of the dependencies needs to build a C-extension,
for example.

Missing external libraries is another common issue. Sometimes it will be
necessary to install the devel version of a library using your package
manager so the header files are available to compile against.

txcas on Raspberry Pi

Since you made it this far, here is an interesting tidbit. Using the
above technique, I was able to install txcas on a Raspberry Pi [http://www.raspberrypi.org/]!
Using the Raspbian image [http://www.raspberrypi.org/downloads/] I installed the following system packages
usinig apt-get install:

	python-dev

	libffi-dev

	python-virtualenv

	virtualenvwrapper

	vim

	git

	htop

The first 2 were the only actual dependencies I needed to install. The
python-virtualenv and virtualenvwrapper packages are just for working
with Python virtual environments (see above). vim is my editor
of choice when working on a Pi, git is needed to clone the txcas
source, and htop is just fun to watch once txcas is up and
running!

xubuntu 14.04 Dependencies for txcas

Here are the OS packages that needed to be installed on a new
xubuntu 14.04 install to build txcas.

	build-essential

	libffi-dev

	libssl-dev

	libxml2-dev

	libxslt1-dev

Create configuration files

In the project directory, copy cas.cfg.example to cas.cfg.
Edit the file and change the settings to suit your needs.
Copy cas.tac.example to cas.tac. Edit the file to configure the
endpoint (host, port, SSL options) on which the service will run.:

$ cd txcas
$ cp cas.cfg.example txcas.cfg
$ vim txcas.cfg
$ cp cas.tac.example cas.tac
$ vim cas.tac

Note

The cas.tac file is a Twisted Application Configuration (TAC) file.
It is essentially a Python file used for configuring a Twisted Application.
As such, it needs to conform to Python syntax. The cas.tac file has
deliberately been kept very simple so configuration is not confusing for
users who don’t have a lot of familiarity with Python. Python enthusiasts
should feel free to experiment with adding settings to this file.
See Using the Twisted Application Framework [http://twistedmatrix.com/documents/current/core/howto/application.html] for more information.

You may need to make additional configuration changes depending on the plugins
you enable. For example, if you use the JSON service registry plugin, you
will need to create a service registry file.
serviceRegistry.json.example is included in the project root as a
starting point.

Start the service

The service is started and stopped with the twistd program included
with the Twisted networking library. This program is used run a
Twisted Application [http://twistedmatrix.com/documents/current/core/howto/basics.html]. The simplest invocation of this command is to provide
the necessary application configuration in a TAC file, which is a
regular Python code file.

The twistd command can also to be used to configure services from
the command line. In this case, the CAS service can be run as a
twistd sub-command, and options specified on the command line will
override options specified in configuration files.

Running the Service as a Twisted Application

Start the service by invoking the twistd command:

$ twistd -n -y cas.tac

The above command runs the application in the foreground. If you want to run the
service as a daemon (background service), omit the -n option.

Running the Service as a twistd Subcommand

You can run the service using the cas subcommand to twistd.
Running the service this way allows you to specify options on the command
line or inspect the online help.:

$ twistd -n cas

Again, the -n option runs the service in the foreground. To run it as
a daemon process, omit that option. If you specify the --help option
after the cas subcommand, the program will output a list of options.

 Copyright 2014, Carl Waldbieser.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	txcas 0.1 documentation

Demonstration

The program sample.py included in the txcas project root can spin up
a CAS service and 4 simple service providers to demonstrate various aspects
of the CAS protocol. Once you have successfully installed the txcas software,
you can run the demonstration with the following command:

$ python ./sample.py

You should see log entries that indicate the ports on which the services are listening.
The ports are:

	9800: The CAS service.

	9801: Service 1. A basic service that will be used as the middle of a proxy chain.

	9802: Service 2. A more advanced service that can obtain a PGT and
act as a proxy.

	9803: Service 3. A basic service that requires primary credentials and does
not participate in SSO.

	9804: Service 4. A basic service.

The demonstration will run without any configuration files. By default, the
following plugins will be selected:

	Credential checker: In-memory database with user ‘foo’ and password ‘password’.

	User realm: A demonstration realm that produces made-up attributes.

	Ticket store: An in-memory ticket store.

The demonstration also customizes the CAS views to some extent, but does not
use a view provider or service manager.

Take The CAS Tour

Point a browser to service 1 at http://127.0.0.1:9801/ . You will be
redirected to the CAS server to log in. Use ‘foo’ and ‘password’ as the
credentials and you will be redirected back to the service. You will see you
are now logged in as ‘foo’.

The log being printed to the console will have printed out the /proxyValidate
XML response, including some (ficticious) attributes that were added to the
avatar by the demonstration user realm.

If you point your browser to service 2 at http://127.0.0.1:9802/, your SSO
session provided by the CAS ticket granting cookie (TGC) will have
transparently allowed you to log into
the second service without having to re-enter crdentials.

Service 2 will also allow you to proxy service 1, which will in turn proxy
service 4. The result returned will show the complete proxy chain.

Service 3 requires you to use primary credentials to log in.

Experimenting With the Demonstration

The demonstration program honors any plugin and option settings made in the main
txcas configuration file. You can try out plugins and options with the demo
services. If you run sample.py with the --no-cas command line
option, the services will be started without the CAS service. You can run
the CAS service in another console and observe how the program interact. The
--cas-base-url option lets you specify the base CAS service URL. This
is useful if you want to run the CAS service on a different host and/or port.

 Copyright 2014, Carl Waldbieser.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	txcas 0.1 documentation

Configuration

The txcas service is configured primarilly via a single configuration
file. The service looks for this file at the following locations:

	/etc/cas/cas.cfg

	$HOME/.casrc

	$PWD/cas.cfg

The configuration options will be loaded, in order, from each of the locations.
Options that appear in multiple locations will be overwritten by the values
that occur later in the search order, so system-wide options will be overridden
by user-specific options, which will be overridden by options specified in the
current woking folder.

This configuration is in a simple INI format. Options are key-value pairs that
occur one per line. Keys are separated from values by an equal sign (=).
Options are grouped into sections, which are denoted by a symbol enclosed by square
brackets ([]).

Sections are:

	CAS: This section contains general options for the service.

	Plugins: This section conatins options used to enable various plugins.

	Sections Specific to Plugins: Some plugins have unique or shared sections
used for configuration.

CAS

This section is used for configuring basic CAS behavior. Options are:

	lt_lifespan: The length of time, in seconds, before a login
ticket expires. Default 300

	st_lifespan: The length of time, in seconds, before a service
ticket expires. Default 10

	pt_lifespan: The length of time, in seconds, before a proxy
ticket expires. Default 10

	pgt_lifespan: The length of time, in seconds, before a proxy
granting ticket expires. Default 600

	tgt_lifespan: The length of time, in seconds, before a ticket
granting ticket expires. Default 86400

	validate_pgturl: Validate a pgtUrl callback certificate, as per
the CAS protocol. Default is 1 (True).

	ticket_size: The ticket size in characters. Default 128

	static_dir: If this option is set to a folder, the cas service will
serve static content out of this folder to the /static resource. By
default, no static content is served.

Plugins

This section is used to enable the plugins used for various parts of the service.
The plugin options supported are:

	cred_checker: The tag used to determine the mechanism that will
be used for authenticating the credentials presented to the service. If
this option is not specified, the service defaults to using a file-based
user database named ./cas_users.passwd. Entries are assumed to
be in user:password format, one entry per line.

	realm: The tag used to determine the plugin that will create an
avatar that will be exposed to a service, mainly via attribute release. A
realm receives an avatar ID that will have already been autheticated via a
cred_checker. If this option is not specified, the service defaults to
using a basic realm that does not include any attributes.

	ticket_store: The tag used to determine the plugin that will be
used to manage tickets that CAS uses. If this option is not specified,
the service defaults to using the in-memory ticket store.

	service_manager: The tag used to determine the plugin that will
be used to determine whether a service is allowed to authenticate with this
CAS service. A service manager also determines if the service participates
in SSO. Extra information provided in the registry is also made
available to the view_provider plugin. If a service manager plugin is not
specified, CAS will run in open mode, and any service will be allowed to
authenticate with this CAS service.

	view_provider: The tag used to determine the plugin that will be
used to provide customized views of CAS pages. If not specified, the service
will provide its own functional but lackluster views.

Sections Specific to Plugins

Some configuration sections are specific to certain plugins. Some plugins may
also reference shared sections. For example, the json_service_manager plugin
can be configured to use a particular service registry file via the section
JSONServiceManager. The ldap_simple_bind cred_checker plugin and the
ldap_realm realm plugin both reference the shared LDAP section to obtain
LDAP-specific options.

 Copyright 2014, Carl Waldbieser.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	txcas 0.1 documentation

Endpoints

A Twisted server endpoint [https://twistedmatrix.com/documents/current/core/howto/endpoints.html] is the end of the connection on which a service
listens for incoming requests. For simple testing and development, the configured
endpoint may be a simple TCP socket. In a production setting, an SSL endpoint
would be more appropriate.

Server endpoints can be described using a simple string format [https://twistedmatrix.com/documents/current/core/howto/endpoints.html#servers]. Additionally,
txcas provides the tls: endpoint which extends the standard ssl: endpoint
with several additional options.

TLS Endpoint Options

	sslmethod : This option is present in the ssl: endpoint and allows
you to set the SSL method (e.g. TLSv1_METHOD). The tls: endpoint allows
you to specify multiple methods joined with ‘+’.
E.g. TLSv1_1_METHOD+TLSv1_2_METHOD. Other OpenSSL options may be specified.
For a complete list, see the PyOpenSSL documentation [https://pyopenssl.readthedocs.org].

	authorities : A path to a file that contains one or more trusted
CA certificates in PEM format used to verify client certificates. If this
option is not specified, client certificates are not verified.

	revokedFile : A path to a file that contains glob patterns,
one per line. Blank lines and lines starting with “#” are ignored. The
files referenced by each pattern should contain one or more revoked client
certificates in PEM format. These certificates are no longer trusted by the
service, and the SSL/TLS handshake will fail if a client presents one to
the service. The file is read once when the service is started. If
the file modification time is updated, all the patterns will be re-processed.
(The *NIX touch command can cause the file to be re-processed
even if no pattern has been changed).

Note

By default, a TLS endpoint will negotiate one of of TLSv1.1, or TLSv1.2.

 Copyright 2014, Carl Waldbieser.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	txcas 0.1 documentation

Authentication

Authentication in txcas is implemented using a plugin system built into
the core Twisted library known as Twisted Cred [https://twistedmatrix.com/documents/14.0.0/core/howto/cred.html]. This system is actually
composed of 3 distinct parts: a credential checker, a portal, and a user realm.

The credential checker is the component that accepts primary credentials and
authenticates them. If successful, it returns an avatarID that the user
realm will use to produce an avatar.

Currently, txcas supports accepting simple username/password credentials as
well as a client certificte checker (trust-based authentication).

A number of credential checkers are available in Twisted Cred [https://twistedmatrix.com/documents/14.0.0/core/howto/cred.html] that support
the username/password credential type. txcas also includes support for the
ldap_simple_bind credential checker via the ldaptor [https://github.com/twisted/ldaptor] library.

Authentication Phases

It is possible for authentication to happen in one of two distinct phases.
The phase that occurs first is the credential requestor (or cred_requestor)
phase. This happens when the user browser makes an HTTP GET request to the
txcas service /login endpoint. At this point, it is possible to attempt
trust-based authentication before the login page is rendered. If successful,
a user will never see the login page. Username/password based authentication
is not available in this phase as the user has not ye had a chance to enter
credentials.

The second phase is the credential acceptor (or cred_acceptor) phase.
This phase happens when the user’s browser makes an HTTP POST to the
txcas service /login endpoint with a username and password. Both
trust-based authentication and username/password authentication may take
place in this phase. If a trust-based credential checker is configured to
authenticate during this phase, it will attempt authentication first. If
successful, the resulting avatar ID is compared to the username
that was submitted. If they do not match, authentication will fail.
Otherwise, username/password authentication will take place. Only if both
forms of authentication succeed will authentication be successful.

Typical Models For Trust-Based Authentication

Due to the fact that trust-based authentication can be configure to occur
in either authentication phase, the user experience can vary.

In the Trust-Only model, trust based authentication is the only option.
Only a trust-based credential checker is configured. There is no
username/password credential checker. The trust-based checker should be
configured to occur in the cred_requestor phase. A user will be authenticated
if her browser has a valid certificate. If not, an error page would be
presented. The user would never see a login page.

The Trust-or-Login model, a trust-based checker is enabled in the cred_requestor
phase. A username/password checker is also enabled (this can only occur in
the cred_acceptor phase). If the user’s browser has a valid certificate, the
user is authenticated transparently as in the “Trust-Only” model. If not, the
user will be presented with the txcas login view and be able to authenticate
with a username/password.

In the Trust-and-Login (a kind of two factor authentication), the trust
checker is enabled in the cred_acceptor phase and a username/password checker is
also enabled. In this case, authentication will only succeed if the user’s
browser has a valid certificate and she enters a valid username/password and
the username she supplies matches the avatar ID extracted from the
certificate.

Configuration

An authentication method is selected via the cred_checker option in the
PLUGINS section of the main configuration file. Valid options are:

	memory: An in-memory password database suitable for demonstrations
and development. Do not use for production!

	file: A file containing username:password entries, one per line.
This option should be followed by a colon and the path to the file. E.g.
file:/etc/cas/cas_users.passwd.

	unix: Attempts to authenticate against a user on the local
UNIX-like system.

	ldap_simple_bind: Attempts a simple BIND against an LDAP server.
The LDAP options can be configured by appending a colon to this option and
providing colon-separated key=value pairs or by configuring options in the
LDAP section of the main config file (the latter method is preferred).

The initial connection to the server may be unecrypted or encrypted depending
on the client endpoint specification used (tcp vs. ssl). Although an
initial SSL connection is supported by many directories (the so-called
ldaps scheme) this type of connection is not included in the LDAP protocol
RFCs. Instead, the LDAP protocol supports STARTTLS [http://en.wikipedia.org/wiki/STARTTLS], which establishes a
TLS connection after the initial connection is made.

Note

StartTLS should not be used in conjunction with an SSL/TLS endpoint.
Because it establishes a TLS connection in response to a protocol
request, the initial connection should occur on an unencrypted TCP
endpoint.

A 2-stage BIND is used when checking credentials. In stage 1, an service DN
and password are used to BIND in order to search for the target entry.
If the target entry is located, this authenticator attempts to BIND using
the password supplied at the CAS login.

The LDAP options are:

	endpointstr: A Twisted endpoint [https://twistedmatrix.com/documents/current/core/howto/endpoints.html#clients] specification describing the
client connection to the LDAP service.

	basedn

	binddn

	bindpw

	query_template: Defaults to (uid=%(username)s). The query
template is a filter that will be used by the LDAP service to identify
the entry that it will attempt to BIND as using the supplied password.
The %(username)s part of the filter will be substituted with the provided
username in order to produce the final filter. The username will be escaped
according to LDAP filter rules. The default template attempts to locate an
entry where the uid attribute matches the provided username. If no
matching entry is located, or if multiple matching entries are located,
authentication will fail.

	start_tls: (Default 0). 1=use StartTLS. 0=don’t use StartTLS.

	start_tls_hostname: If the expected hostname of the directory
service is not specified, the StartTLS connection will be encrypted, but
not verified. This will leave the connection vulnerable to
man-in-the-middle (MITM) style attacks.

	start_tls_cacert: Typically, this option is not required as the
LDAP client will use CA certificates based on an OS-specific trust
mechanism (platform trust). However, if the directory you connect to uses
an internal CA certificate, you may specifically indicate a file in PEM
format that contains the CA certificate to trust when using StartTLS..

	client_cert: This form of authentication is trust-based and happens
during a SSL handshake. In order for this checker to succeed,
the txcas service must run on a TLS endpoint. At least one CA
certificate that the server will trust for client certificates must be
specified via the authorities option for the endpoint. Multiple
certificates may be concatenated in the authorities file, but the user
experience may be degraded. A browser will typically ask the user to select
the certificate that ought to be presented to the server if multiple valid
options are available.

The options for this plugin are:

	subject_part: The part of the subject to extract, e.g. “CN”,
or “emailAddress”.

	transform: A comma-separated list of ‘upper’, ‘lower’,
‘strip_domain’. One or more transforms are
applied to the extracted subject part..

	auth_when: The authentication phase when this checker is active.
Valid options are ‘cred_requestor’ (default) and ‘cred_acceptor’.

If you have added additional plugins to your $TXCAS/twisted/plugins
folder, additional option values may be available. The plugin documentation
should cover these. You can also list the available plugins with the following
command:

$ twistd -n cas --help-auth

 Copyright 2014, Carl Waldbieser.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	txcas 0.1 documentation

User Realms

In txcas, a user realm is a component that translates an authenticated
avatarID into an avatar that implements the ICASUSer interface. The CAS
service will use this object when determining the username and attributes
that should be sent to a service provider during a /serviceValidate or
/proxyValidate request. A user realm object will implement the
Twisted Cred [https://twistedmatrix.com/documents/14.0.0/core/howto/cred.html] IRealm interface.

The separation of authentication and avatar generation allows avatars
to be populated with attributes that are not neccessarilly available via the
authentication provider. For example, txcas could be configured to authenticate
against a file-based password database, but the avatar could be populated with
attributes retrieved from a web-based service or an LDAP directory.

A realm is enabled by setting the realm option of the PLUGINS
section in the main configuration file.
The realm options included in txcas are:

	demo_realm: A realm created for demonstration purposes. The
avatar is constructed directly from the avatarID (username) provided and
populated with phony attributes.

	basic_realm: This realm is very basic and suitable for situations
where attribute release is not needed. In this case, CAS acts as a pure
authenticator, and service providers must base access control decisions
entirely on the avatar username.

	ldap_realm: This realm constructs the avatar by BINDing to a LDAP
directory and retrieving a set of possible attributes.

The LDAP options can be configured by appending a colon to this option and
providing colon-separated key=value pairs or by configuring options in the
LDAP section of the main config file (the latter method is preferred).

The initial connection to the server may be unecrypted or encrypted depending
on the client endpoint specification used (tcp vs. ssl). Although an
initial SSL connection is supported by many directories (the so-called
ldaps scheme) this type of connection is not included in the LDAP protocol
RFCs. Instead, the LDAP protocol supports STARTTLS [http://en.wikipedia.org/wiki/STARTTLS], which establishes a
TLS connection after the initial connection is made.

Note

StartTLS should not be used in conjunction with an SSL/TLS endpoint.
Because it establishes a TLS connection in response to a protocol
request, the initial connection should occur on an unencrypted TCP
endpoint.

The LDAP options are:

	endpointstr: A Twisted endpoint [https://twistedmatrix.com/documents/current/core/howto/endpoints.html#clients] specification describing the
client connection to the LDAP service.

	basedn

	binddn

	bindpw

	query_template: Defaults to (uid=%(username)s). The query
template is a filter that will be used by the LDAP service to identify
the entry that it will attempt to BIND as using the supplied password.
The %(username)s part of the filter will be substituted with the provided
username in order to produce the final filter. The username will be escaped
according to LDAP filter rules. The default template attempts to locate an
entry where the uid attribute matches the provided username. If no
matching entry is located, or if multiple matching entries are located,
avatar generation will fail. txcas will report this as an authentication
failure to end users, though the logs should be helpful in determining the
reason.

	attribs: A comma separated list of attributes that the realm
should attempt to populate during avatar generation.

	aliases: A comma separated list of aliases that is the same
length as the attribs option. Each attribute fetched will
be mapped to the alias name indicated.

	service_based_attribs: 1 (True) or 0 (False). Defaults to False.
If this option is selected and a service manager plugin is used, the
service entry for the current service will be used to look up a list
of attributes or a mapping of attributes-to-aliases. Whether a list or
a mapping, the data should be located under the attributes key of the
service registry entry. If that key is not present for a particular entry
the attribs and aliases options above will be used to
compute the attributes to add to the realm.

	start_tls: (Default 0). 1=use StartTLS. 0=don’t use StartTLS.

	start_tls_hostname: If the expected hostname of the directory
service is not specified, the StartTLS connection will be encrypted, but
not verified. This will leave the connection vulnerable to
man-in-the-middle (MITM) style attacks.

	start_tls_cacert: Typically, this option is not required as the
LDAP client will use CA certificates based on an OS-specific trust
mechanism (platform trust). However, if the directory you connect to uses
an internal CA certificate, you may specifically indicate a file in PEM
format that contains the CA certificate to trust when using StartTLS..

If you have added additional plugins to your $TXCAS/twisted/plugins
folder, additional option values may be available. The plugin documentation
should cover these. You can also list the available plugins with the following
command:

$ twistd -n cas --help-realms

 Copyright 2014, Carl Waldbieser.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	txcas 0.1 documentation

Ticket Stores

Ticket stores in txcas are plugins used to keep track of the various tickets
used by the CAS protocol. Ticket stores generate tickets on request. A ticket
store must track how long a ticket is valid and expire it appropriately.
A ticket store is also responsible for validating tickets, and making Single
Log Out (SLO) callbacks to services.

A ticket_store is enabled by setting the ticket_store option of the
PLUGINS section in the main configuration file.
The ticket_store options included in txcas are:

	memory_ticket_store: This ticket store manages tickets entirely in
the memory allocated to the txcas process. It has the advantage of being quite
fast when it comes to ticket creation, modification, or expiration. There is
no network latency. However, this ticket store is limited in that it is not
persistant. If the process is stopped and restarted, all tickets that were
previously in the ticket store are lost. Also, for situations where CAS
servers span multiple nodes, this type of ticket store cannot be shared
across process or server boundries.

	couchdb_ticket_store: This ticket store manages tickets in an
external CouchDB [http://couchdb.apache.org/] database. This ticket store may have network latency
issues associated with it that are not present in an in-memory ticket store.
However, tickets stored “in the couch” are persistant. Because the ticket
storage is external, tickets can be shared across multiple nodes. Also,
CouchDB’s master-master replication capabilites make this storage worthy
of consideration for high availability scenarios. Projects like
CouchDB Lounge [http://tilgovi.github.io/couchdb-lounge/] or Big Couch [http://bigcouch.cloudant.com/] are certainly worth a look if scalability
is a concern.

Because CouchDB is written to be operated completely with a RESTful API, no
special database drivers are required. It is also a good fit with the
Twisted asynchronous I/O model [http://krondo.com/?p=1209].

The CouchDB options can be configured by appending a colon to this option and
providing colon-separated key=value pairs or by configuring options in the
CouchDB section of the main config file (the latter method is preferred).

The CouchDB options are:

	host: The database server hostname or IP address.

	port: The port that CouchDB listens on.

	db: The name of the database (e.g. “cas_tickets”).

	user: The username to connect to the database as.

	passwd: The password to use when connecting to the database.

	https: 1 (True) or 0 (False). When connecting to the database,
use HTTPS.

	verify_cert: 1 (True) or 0 (False). When connecting to the
database, verify its X509 cert. It is useful to set this option to False
during development if using a self-signed cert.

Options Common to All Ticket Stores

All ticket stores must support specific options:

	lt_lifespan: The time in seconds before a Login Ticket expires.

	st_lifespan: The time in seconds before a Service Ticket expires.

	pt_lifespan: The time in seconds before a Proxy Ticket expires.

	pgt_lifespan: The time in seconds before a Proxy Granting Ticket
expires.

	tgt_lifespan: The time in seconds before a Ticket Granting Ticket
expires.

	ticket_size: The size of a ticket (in characters) generated by the
ticket store.

Note

Ticket lifespan countdowns for multi-use tickets (PGT s and
TGT s) may be reset if a ticket is used. Some tickets have their
lifespans connected to their parent tickets as per the CAS protocol and
should not outlive their parent tickets.

Interaction With Service Managers

If a service manager is enabled in the txcas service, the ticket store will use
it to determine if the CAS server will authenticate for a particular service.

 Copyright 2014, Carl Waldbieser.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	txcas 0.1 documentation

Service Managers

Service managers are plugin components within txcas that determine whether CAS
will validate tickets for a particular service provider. Service managers also
determine if services that CAS will validate will participate in CAS SSO
sessions. If a service manager determines that a given service will not
participate in SSO, then primary credentials will always be requested
via the CAS login whenever authentication is requested for that service.

Service managers are free to provide additional information about services.
This information may be consumed by a view provider plugin, if one is enabled.

Service managers are enabled by setting the service_manager option
in the PLUGINS section of the main configuration file.
Valid settings for this option include:

	json_service_manager: This service manager stores information in JSON format
in a file accessible to the txcas service. The file is read, parsed, and
represented in memory. If the file is changed, the service manager will
detect the change and reload the file contents.

The options for this plugin can be configured by appending a colon to the
option name and providing colon-separated key=value pairs or by
configuring options in the JSONServiceManager section of the main config
file (the latter method is preferred).

The JSONServiceManager options are:

	path: The path to the service registry JSON file.

The format of the the service registry is a list of entries, where each entry
is a mapping of key-value pairs. The following keys have special meanings to
the service manager:

	name: The name of the service. Used mainly for identification during
logging.

	scheme: One of http, https, or *.

	netloc: A value composed of a host or domain pattern, and optionally
followed by a colon and a port number. If the port number is omitted, it
is inferred by the actual scheme of the service (443 for https, 80 for
http). A host/domain pattern is in dotted notation. Each component of
the name may be replaced by an asterisk (*) indicating that component is
a wildcard match. If the first component is a double asterisk, that means
that any hostname that ends with the same pattern will match.

	path: The path part of the service URI.

	child_paths: true or false. whether to include child paths of
the path component as matches. False indicates an exact path match is
required.

	required_params: A mapping of required parameters in key:list-of-values
format or null. If the required parameters and values are not present,
the service will not match.

	SSO: true or false. If false, CAS will authenticate the service, but
it will request primary credentials each time. The service will not
participate in SSO.

 Copyright 2014, Carl Waldbieser.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	txcas 0.1 documentation

View Providers

View provider plugins render the user facing web pages in txcas.
These include:

	The login page

	The successful login to SSO page

	The logout page

	The invalid service page

	The error page

	The resource not found page

If a service manager is enabled, a reference to it is given to a view provider
so that a service entry is made available to the login page and invalid
service views.

A view provider does not have to provide every view. If it does not provide
a particular view, the default txcas view will be presented.

A view provider is enabled by setting the view_provider option
in the PLUGINS section of the main configuration file.
Valid options include:

	jinja2_view_provider: This view provider renders HTML pages from Jinja2 [http://jinja.pocoo.org/docs/]
templates. The request object is made available to all templates. The
following names are made available to each view:

	login page
	login_ticket: A login ticket that must be POSTed when presenting
credentials.

	service: The service requesting authentication. May be an empty
string, indicating the user is trying to log into a CAS SSO
session without logging into a service.

	service_entry: The complete service entry from the service manager.

	failed: True / False, indicates if previously submitted credentials
failed.

	request

	successful login
	avatar: The avatar provided by the user realm.

	request

	logout
	request

	invalid service
	service: The service requesting authentication.

	service_entry: The complete service entry from the service manager.

	request

	error
	err: The failure object.

	request

	not found
	request

The plugin options can be configured by appending a colon to this option and
providing colon-separated key=value pairs or by configuring options in the
Jinja2ViewProvider section of the main config file (the latter method is
preferred).

The Jinja2ViewProvider options are:

	template_folder: The path to the folder that will contain the
templates. The templates should be named:
	login.jinja2

	login_success.jinja2

	logout.jinja2

	invalid_service.jinja2

	error_5xx.jinja2

	not_found.jinja2

 Copyright 2014, Carl Waldbieser.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	txcas 0.1 documentation

Plugin Troubleshooting

If you install a plugin but don’t see it listed as a valid
option, you can try running the ./plugin_test.py script from the
main project folder. This script is a simple diagnostic that lists all
available plugins of the types relevant to txcas. Pay special attention to
any error output produced, as it may indicate some kind of problem with the
plugin installation.

 Copyright 2014, Carl Waldbieser.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	txcas 0.1 documentation

Development

The txcas software makes heavy use of the Twisted Plugin System [http://twistedmatrix.com/documents/current/core/howto/plugin.html]. The core software
implements the web interactions and delegates various operations to plugins.

Basic File Layout and Script Requirements

Plugin intergration code should be located in $PROJECT/twisted/plugins
in a Python script file. The script should assign global variables to
instances of a class or classes that implement the factory interface for the
plugin you are developing. For example, a file called
/somewhere/on/your/PYTHONPATH/myspecialticketstore.py might look something like:

from txcas.interface import ITicketStore, ITicketStoreFactory
from twisted.plugin import IPlugin
from zope.interface import implements

class WickedCoolTicketStoreFactory(object):
 """
 A factory for creating wicked-cool ticket stores!
 """
 implements(IPlugin, ITicketStoreFactory)

 tag = "wicked_cool_ticket_store"
 opt_help = "I am detailed help printed on the command line."
 opt_usage = "I am the brief help printed on the command line."

 def generateTicketStore(self, argstring=""):
 """
 This method returns an object that implements ITicketStore.
 It is configured via the string passed to this function, but it can
 also pull settings out of the txcas configuration file. The
 settings passed in should be given preference to those in the
 config file.
 """
 # Implementation is something you would need to code.
 # ...
 return a_shiny_new_ticket_store

The file $TXCAS_ROOT/twisted/plugins/myspecialticketstoreplugin.py should contain
something like:

from myspecialticketstore import WicketCoolTicketStoreFactory
import txcas.settings

aplugin = WickedCoolTicketStoreFactory()

Note

In the above example, the script that actually implements the
WickedCoolTicketStoreFactory does not need to reside in the
txcas project folder. It can be located anywhere on your
PYTHONPATH.

The code that instantiates the plugin factory should reside in the
$TXCAS_ROOT/twisted/plugins folder.

The reason that factories are used is that many plugins tend to need some kind
of configuration. Factories can be created with no configuration, and they can
accept command line arguments that can be used in the configuration process.

If you look at the source code in txcas/interface.py, you will see that
for each plugin type, there is an interface for a factory and an interface for
the plugin the factory produces.

For more information on writing Twisted plugins, see Writing a twistd Plugin [https://twistedmatrix.com/documents/current/core/howto/tap.html]

Kinds of Plugins

All unqualified interface references below are understood to belong to the
txcas.interface module.

Credential checkers and user realms are are components of Twisted Cred [https://twistedmatrix.com/documents/current/core/howto/cred.html],
Twisted’s pluggable authentication system. Credential checkers authenticate
credentials presented. User realms create avatar s for authenticated
users. Currently, txcas supports credential checkers that consume credentials
that implement the twisted.cred.credentials.IUsernamePassword [https://twistedmatrix.com/documents/current/api/twisted.cred.credentials.IUsernamePassword.html] interface.

Credential checker factories should implement the twisted.cred.strcred.ICheckerFactory [https://twistedmatrix.com/documents/current/api/twisted.cred.strcred.ICheckerFactory.html]
interface. Credential checkers should implement the twisted.cred.checkers.ICredentialsChecker [https://twistedmatrix.com/documents/current/api/twisted.cred.checkers.ICredentialsChecker.html]
interface. User realm factories should implement the IRealmFactory interface.
User realms should implement the twisted.cred.portal.IRealm [https://twistedmatrix.com/documents/current/api/twisted.cred.portal.IRealm.html] interface. Avatars
produced by a realm should implement the ICASUser interface.

Some credential checkers are able to operate based on information that is present
in either of the ‘cred_requestor’ or the ‘cred_acceptor’ authentication phases.
These plugins should implement the ICASAuthWhen interface to communicate to the
server the phase in which the plugin should be active.

Ticket stores manage the tickets used by CAS. They track ticket lifetimes,
validate them, and expire them. Ticket stores may need to work with service
managers to determine if a ticket ought to be created for a service provider,
or if a service provider participates in SSO.

Ticket store factories should implement the ITicketStoreFactory interface.
Ticket stores should implement ITicketStore.

Service managers are used to decide whether a service provider is allowed to
authenticate with a particular txcas instance, and whether or not a service
provider will participate in SSO. Without a service manager, txcas runs
“open”, meaning that any service provider may authenticate with it.

Service manager factories should implement IServiceManagerFactory.
Service managers should implement IServiceManager.

Service managers may also provide additional service entry meta-data that
other plugins can use. This meta-data may be used to customize views or
activate decision making logic in other components (e.g. the attributes
included in a realm could be tailored to specific services).
If a plugin wants to receive a reference to the service manager, it should
implement the IServiceManagerAcceptor interface.

View providers are used to customize the web pages presented by the txcas
service. This kind of customization makes it possible to present a specific
theme or appearance that meshes with an organizational web site.

View provider factories should implement IViewProviderFactory. View providers
should implement IViewProvider. A view provider’s provideView()
method should return a callable if it provides a particular view or None
if it does not.

Unit Tests

txcas comes with its own unit tests. To run the tests:

$ trial txcas/test/test_server.py

You should see a number of test cases with statuses for each test: SKIPPED,
FAIL or OK. Tests that are skipped typically require some kind of
middleware to be running that is difficult to emulate for the test. An example
would be the CouchDB ticket store. These tests tend to be slow and require
configuration information to be passed to the test script. To enable these
tests, copy the file txcas/test/tests.cfg.example to
txcas/test/tests.cfg. Edit the Tests section to enable the optional
tests. Provide any required settings for the middleware in the appropriate
section and re-run the tests.

When developing your own plugins, it is recommended you develop your own unit
tests. For more information on unit testing with Twisted, see the Trial [http://twistedmatrix.com/trac/wiki/TwistedTrial]
documentation and its associated howto [http://twistedmatrix.com/documents/current/core/howto/trial.html].

 Copyright 2014, Carl Waldbieser.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	txcas 0.1 documentation

Glossary

	AVATAR

	A representation of an authenticated user. In txcas, an avatar must
implement the interface ICASUSer. The avatar will have a username
and possibly one or more attributes associated with it.

	AVATAR ID

	An identifier that can be used to uniquely represent an avatar.
A username submitted from a login form could be an example of an
avatar ID.

	PGT

	Proxy Granting Ticket. A ticket obtained by a service provider that
allows it to request proxt tickets from CAS. The proxy tickets can
later be used to request services from other service providers that
participate in the CAS session.

	SLO

	Single Log-out. When a user is logged out of a CAS SSO
session, all CAS clients that authenticated via the session are
notified of the session termination.

See https://github.com/Jasig/cas/blob/master/cas-server-protocol/3.0/cas_protocol_3_0.md#233-single-logout
for details.

	SSO

	Single Sign-On. The ability to login once to a service authentication
broker and not have to present primary credentials to log into same
or different participating services, often for a specific period of
time.

	TAC FILE

	A Twisted Application Configuration file. A regular Python file used
to configure a Twisted Application. Endpoint settings (interface,
port, SSL settings) are commonly configured in this type of file.

	TGT

	Ticket Granting Ticket. A ticket issued when a CAS session is started
by providing primary credentials. The TGT is then used to request
service tickets that a service provider can validate with CAS to prove
that the ticket presenter has been authenticated by CAS.

	TWO FACTOR AUTHENTICATION

	Authentication based on two independent authentication factors. Factors
may include something known to a user, something a user has, or something
a user is. See http://en.wikipedia.org/wiki/Multi-factor_authentication
for more information.

 Copyright 2014, Carl Waldbieser.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	txcas 0.1 documentation

Index

 A
 | E
 | P
 | S
 | T

A

 	

 	AVATAR

 	

 	AVATAR ID

E

 	

 	
 environment variable

 	

 	PYTHONPATH

P

 	

 	PGT

 	

 	PYTHONPATH

S

 	

 	SLO

 	

 	SSO

T

 	

 	TAC FILE

 	TGT

 	

 	TWO FACTOR AUTHENTICATION

 Copyright 2014, Carl Waldbieser.
 Created using Sphinx 1.3.1.

 _static/down.png

_static/comment.png

placeholders.html

 Navigation

 		
 index

 		txcas 0.1 documentation »

 © Copyright 2014, Carl Waldbieser.
 Created using Sphinx 1.3.1.

search.html

 Navigation

 		
 index

 		txcas 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Carl Waldbieser.
 Created using Sphinx 1.3.1.

_static/plus.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/minus.png

_static/comment-close.png

_static/up-pressed.png

_static/file.png

