
txcas Documentation
Release 0.1

Carl Waldbieser

August 17, 2015

Contents

1 Overview 3
1.1 Features . 3
1.2 Why Another CAS Server? . 3

2 Installation 5
2.1 Clone the source from GitHub . 5
2.2 Configure the Python environment . 5
2.3 Create configuration files . 7
2.4 Start the service . 7

3 Demonstration 9
3.1 Take The CAS Tour . 9
3.2 Experimenting With the Demonstration . 10

4 Configuration 11
4.1 CAS . 11
4.2 Plugins . 12
4.3 Sections Specific to Plugins . 12

5 Endpoints 13
5.1 TLS Endpoint Options . 13

6 Authentication 15
6.1 Authentication Phases . 15

7 User Realms 19

8 Ticket Stores 21
8.1 Options Common to All Ticket Stores . 22
8.2 Interaction With Service Managers . 22

9 Service Managers 23

10 View Providers 25

11 Plugin Troubleshooting 27

12 Development 29
12.1 Basic File Layout and Script Requirements . 29
12.2 Kinds of Plugins . 30

i

12.3 Unit Tests . 31

13 Glossary 33

14 Indices and tables 35

ii

txcas Documentation, Release 0.1

Contents:

Contents 1

txcas Documentation, Release 0.1

2 Contents

CHAPTER 1

Overview

The Central Authentication Service (CAS) is a protocol that allows a single web site to act as the authentication broker
for service providers. Twisted is an asyncronous networking library for the Python programming language. Since
prefixing project names with “twisted” is somewhat long-ish, Twisted Python projects tend toward using the “tx”
prefix. So “txcas” is an implementation of a CAS server using the Twisted Python library.

1.1 Features

• Implements the CAS Protocol v3.0 required sections (1-3).

• Easy to start/stop service that listens and responds to incoming requests. No external web server or web appli-
cation container required.

• Open source Python code making heavy use of the Twisted networking library.

• Flexible plugin architecture, allowing customization of major architectural components.

• Plugins for Authentication (file, unix, LDAP, client x509), User Realms (basic, LDAP), Ticket Stores (in-
memory, CouchDB), Service Managers (JSON), and View Providers (Jinja2 templates).

• Simple configuration.

• Runs on a Raspberry Pi!

1.2 Why Another CAS Server?

The Apereo Foundation already maintains the reference CAS server implementation. It is robust, well tested, reliable,
flexible software that has a vibrant community behind it. So why another server implementation?

Ultimately, the reason this project exists is that I unapologetically love programming in Python! It has been said the
Python “fits your brain”, and in my case, I most certainly agree. I am also a big fan of the Twisted networking library
and asynchronous I/O.

I recognize many of the benefits of the Java programming language and its associated tool chain, but it is not my
software environment of choice. I found a basic CAS server written in Python on GitHub. I forked it, and started this
project.

1.2.1 Goals

My goals for this project are as follows:

3

http://jasig.github.io/cas/
https://twistedmatrix.com/trac/
https://www.python.org/
http://www.raspberrypi.org/
http://www.apereo.org/
https://www.java.com

txcas Documentation, Release 0.1

• Produce a working, production quality CAS server that implements all the required features of the CAS protocol.

• Provide a flexible and customizable plugin architecture. Don’t try to include every option in the core server.

• Keep the code base simple to learn and understand.

• Keep the administration of the service simple to use.

4 Chapter 1. Overview

CHAPTER 2

Installation

1. Clone the source from GitHub

2. Configure the Python environment

3. Create configuration files

4. Start the service

2.1 Clone the source from GitHub

Use the standard git clone command:

$ git clone 'https://github.com/cwaldbieser/txcas.git'

2.2 Configure the Python environment

If you are new to Python, this will probably be the most difficult step. txcas is tested and run on Python v2.7. Older
versions (e.g. v2.6) may work, but are not recommended.

You can download Python from the official web site. If you are running some flavor of Linux or BSD, your distri-
bution’s package manager may provide a pre-packaged Python. The official documentation has a helpful Setup and
Usage section.

Note: Attention Windows users! In addition to the Python installer available from the official web site, there are some
alternative bundles. The ActivePython installer is a great choice for Python on Windows!

2.2.1 Fufilling Dependencies

Warning: Fufilling dependencies tends to be where the real pain points in any software installation are felt. I
apologize in advance. The good news is that you probably only have to do this once to set up a development
environment. If you set up production environments from source, make sure you take good notes if this step isn’t
a smooth ride.

The requirements.txt file lists all the Python dependencies for txcas. Some Python modules may require
dependencies on external system libraries which may vary depending on your platform. Installing all the dependencies
manually is not a fun process.

5

https://www.python.org/
https://www.python.org/downloads/
https://docs.python.org/2/using/index.html
https://docs.python.org/2/using/index.html
http://www.activestate.com/activepython

txcas Documentation, Release 0.1

While there is no silver bullet, a lot of work has been done to make satisfying dependencies a bit more civilized. Your
package manager may provide python modules that you can yum install or apt-get install.

I recommend installing dependencies in a Python virtual environment. This keeps all your dependencies isolated from
your system Python and any other Python environments you have. There is a handy guide to virtual environments.

Once I have a virtual environment created and activated, I use pip to install the requirements listed in
requirements.txt.

$ pip install -r ./requirements.txt

Ideally, you can sit back and relax while the packages are downloaded from the Python Package Index (PyPi) and
installed as if by magic. In practice, sometimes there are unmet dependencies external to Python that pop up. You may
not have the traditional build tools for your platform installed. This will cause issues if one of the dependencies needs
to build a C-extension, for example.

Missing external libraries is another common issue. Sometimes it will be necessary to install the devel version of a
library using your package manager so the header files are available to compile against.

2.2.2 txcas on Raspberry Pi

Since you made it this far, here is an interesting tidbit. Using the above technique, I was able to install txcas on a
Raspberry Pi! Using the Raspbian image I installed the following system packages usinig apt-get install:

• python-dev

• libffi-dev

• python-virtualenv

• virtualenvwrapper

• vim

• git

• htop

The first 2 were the only actual dependencies I needed to install. The python-virtualenv and virtualenvwrapper pack-
ages are just for working with Python virtual environments (see above). vim is my editor of choice when working on
a Pi, git is needed to clone the txcas source, and htop is just fun to watch once txcas is up and running!

2.2.3 xubuntu 14.04 Dependencies for txcas

Here are the OS packages that needed to be installed on a new xubuntu 14.04 install to build txcas.

• build-essential

• libffi-dev

• libssl-dev

• libxml2-dev

• libxslt1-dev

6 Chapter 2. Installation

http://docs.python-guide.org/en/latest/dev/virtualenvs/
http://pip.readthedocs.org/en/latest/index.html
https://pypi.python.org/pypi
http://www.raspberrypi.org/
http://www.raspberrypi.org/downloads/

txcas Documentation, Release 0.1

2.3 Create configuration files

In the project directory, copy cas.cfg.example to cas.cfg. Edit the file and change the settings to suit your
needs. Copy cas.tac.example to cas.tac. Edit the file to configure the endpoint (host, port, SSL options) on
which the service will run.:

$ cd txcas
$ cp cas.cfg.example txcas.cfg
$ vim txcas.cfg
$ cp cas.tac.example cas.tac
$ vim cas.tac

Note: The cas.tac file is a Twisted Application Configuration (TAC) file. It is essentially a Python file used for
configuring a Twisted Application. As such, it needs to conform to Python syntax. The cas.tac file has deliberately
been kept very simple so configuration is not confusing for users who don’t have a lot of familiarity with Python.
Python enthusiasts should feel free to experiment with adding settings to this file. See Using the Twisted Application
Framework for more information.

You may need to make additional configuration changes depending on the plugins you enable. For ex-
ample, if you use the JSON service registry plugin, you will need to create a service registry file.
serviceRegistry.json.example is included in the project root as a starting point.

2.4 Start the service

The service is started and stopped with the twistd program included with the Twisted networking library. This
program is used run a Twisted Application. The simplest invocation of this command is to provide the necessary
application configuration in a TAC file, which is a regular Python code file.

The twistd command can also to be used to configure services from the command line. In this case, the CAS service
can be run as a twistd sub-command, and options specified on the command line will override options specified in
configuration files.

2.4.1 Running the Service as a Twisted Application

Start the service by invoking the twistd command:

$ twistd -n -y cas.tac

The above command runs the application in the foreground. If you want to run the service as a daemon (background
service), omit the -n option.

2.4.2 Running the Service as a twistd Subcommand

You can run the service using the cas subcommand to twistd. Running the service this way allows you to specify
options on the command line or inspect the online help.:

$ twistd -n cas

Again, the -n option runs the service in the foreground. To run it as a daemon process, omit that option. If you specify
the --help option after the cas subcommand, the program will output a list of options.

2.3. Create configuration files 7

http://twistedmatrix.com/documents/current/core/howto/application.html
http://twistedmatrix.com/documents/current/core/howto/application.html
http://twistedmatrix.com/documents/current/core/howto/basics.html

txcas Documentation, Release 0.1

8 Chapter 2. Installation

CHAPTER 3

Demonstration

The program sample.py included in the txcas project root can spin up a CAS service and 4 simple service providers
to demonstrate various aspects of the CAS protocol. Once you have successfully installed the txcas software, you can
run the demonstration with the following command:

$ python ./sample.py

You should see log entries that indicate the ports on which the services are listening. The ports are:

• 9800: The CAS service.

• 9801: Service 1. A basic service that will be used as the middle of a proxy chain.

• 9802: Service 2. A more advanced service that can obtain a PGT and act as a proxy.

• 9803: Service 3. A basic service that requires primary credentials and does not participate in SSO.

• 9804: Service 4. A basic service.

The demonstration will run without any configuration files. By default, the following plugins will be selected:

• Credential checker: In-memory database with user ‘foo’ and password ‘password’.

• User realm: A demonstration realm that produces made-up attributes.

• Ticket store: An in-memory ticket store.

The demonstration also customizes the CAS views to some extent, but does not use a view provider or service manager.

3.1 Take The CAS Tour

Point a browser to service 1 at http://127.0.0.1:9801/ . You will be redirected to the CAS server to log in. Use ‘foo’
and ‘password’ as the credentials and you will be redirected back to the service. You will see you are now logged in
as ‘foo’.

The log being printed to the console will have printed out the /proxyValidate XML response, including some (ficti-
cious) attributes that were added to the avatar by the demonstration user realm.

If you point your browser to service 2 at http://127.0.0.1:9802/, your SSO session provided by the CAS ticket granting
cookie (TGC) will have transparently allowed you to log into the second service without having to re-enter crdentials.

Service 2 will also allow you to proxy service 1, which will in turn proxy service 4. The result returned will show the
complete proxy chain.

Service 3 requires you to use primary credentials to log in.

9

http://127.0.0.1:9801/
http://127.0.0.1:9802/

txcas Documentation, Release 0.1

3.2 Experimenting With the Demonstration

The demonstration program honors any plugin and option settings made in the main txcas configuration file. You
can try out plugins and options with the demo services. If you run sample.py with the --no-cas command line
option, the services will be started without the CAS service. You can run the CAS service in another console and
observe how the program interact. The --cas-base-url option lets you specify the base CAS service URL. This
is useful if you want to run the CAS service on a different host and/or port.

10 Chapter 3. Demonstration

CHAPTER 4

Configuration

The txcas service is configured primarilly via a single configuration file. The service looks for this file at the following
locations:

• /etc/cas/cas.cfg

• $HOME/.casrc

• $PWD/cas.cfg

The configuration options will be loaded, in order, from each of the locations. Options that appear in multiple locations
will be overwritten by the values that occur later in the search order, so system-wide options will be overridden by
user-specific options, which will be overridden by options specified in the current woking folder.

This configuration is in a simple INI format. Options are key-value pairs that occur one per line. Keys are separated
from values by an equal sign (=). Options are grouped into sections, which are denoted by a symbol enclosed by
square brackets ([]).

Sections are:

• CAS: This section contains general options for the service.

• Plugins: This section conatins options used to enable various plugins.

• Sections Specific to Plugins: Some plugins have unique or shared sections used for configuration.

4.1 CAS

This section is used for configuring basic CAS behavior. Options are:

• lt_lifespan: The length of time, in seconds, before a login ticket expires. Default 300

• st_lifespan: The length of time, in seconds, before a service ticket expires. Default 10

• pt_lifespan: The length of time, in seconds, before a proxy ticket expires. Default 10

• pgt_lifespan: The length of time, in seconds, before a proxy granting ticket expires. Default 600

• tgt_lifespan: The length of time, in seconds, before a ticket granting ticket expires. Default 86400

• validate_pgturl: Validate a pgtUrl callback certificate, as per the CAS protocol. Default is 1 (True).

• ticket_size: The ticket size in characters. Default 128

• static_dir: If this option is set to a folder, the cas service will serve static content out of this folder to the
/static resource. By default, no static content is served.

11

txcas Documentation, Release 0.1

4.2 Plugins

This section is used to enable the plugins used for various parts of the service. The plugin options supported are:

• cred_checker: The tag used to determine the mechanism that will be used for authenticating the credentials
presented to the service. If this option is not specified, the service defaults to using a file-based user database
named ./cas_users.passwd. Entries are assumed to be in user:password format, one entry per line.

• realm: The tag used to determine the plugin that will create an avatar that will be exposed to a service, mainly
via attribute release. A realm receives an avatar ID that will have already been autheticated via a cred_checker.
If this option is not specified, the service defaults to using a basic realm that does not include any attributes.

• ticket_store: The tag used to determine the plugin that will be used to manage tickets that CAS uses. If
this option is not specified, the service defaults to using the in-memory ticket store.

• service_manager: The tag used to determine the plugin that will be used to determine whether a service is
allowed to authenticate with this CAS service. A service manager also determines if the service participates in
SSO. Extra information provided in the registry is also made available to the view_provider plugin. If a service
manager plugin is not specified, CAS will run in open mode, and any service will be allowed to authenticate
with this CAS service.

• view_provider: The tag used to determine the plugin that will be used to provide customized views of CAS
pages. If not specified, the service will provide its own functional but lackluster views.

4.3 Sections Specific to Plugins

Some configuration sections are specific to certain plugins. Some plugins may also reference shared sections. For
example, the json_service_manager plugin can be configured to use a particular service registry file via the section
JSONServiceManager. The ldap_simple_bind cred_checker plugin and the ldap_realm realm plugin both reference
the shared LDAP section to obtain LDAP-specific options.

12 Chapter 4. Configuration

CHAPTER 5

Endpoints

A Twisted server endpoint is the end of the connection on which a service listens for incoming requests. For simple
testing and development, the configured endpoint may be a simple TCP socket. In a production setting, an SSL
endpoint would be more appropriate.

Server endpoints can be described using a simple string format. Additionally, txcas provides the tls: endpoint which
extends the standard ssl: endpoint with several additional options.

5.1 TLS Endpoint Options

• sslmethod : This option is present in the ssl: endpoint and allows you to set the SSL method (e.g.
TLSv1_METHOD). The tls: endpoint allows you to specify multiple methods joined with ‘+’. E.g.
TLSv1_1_METHOD+TLSv1_2_METHOD. Other OpenSSL options may be specified. For a complete list, see
the PyOpenSSL documentation.

• authorities : A path to a file that contains one or more trusted CA certificates in PEM format used to verify
client certificates. If this option is not specified, client certificates are not verified.

• revokedFile : A path to a file that contains glob patterns, one per line. Blank lines and lines starting with
“#” are ignored. The files referenced by each pattern should contain one or more revoked client certificates in
PEM format. These certificates are no longer trusted by the service, and the SSL/TLS handshake will fail if a
client presents one to the service. The file is read once when the service is started. If the file modification time is
updated, all the patterns will be re-processed. (The *NIX touch command can cause the file to be re-processed
even if no pattern has been changed).

Note: By default, a TLS endpoint will negotiate one of of TLSv1.1, or TLSv1.2.

13

https://twistedmatrix.com/documents/current/core/howto/endpoints.html
https://twistedmatrix.com/documents/current/core/howto/endpoints.html#servers
https://pyopenssl.readthedocs.org

txcas Documentation, Release 0.1

14 Chapter 5. Endpoints

CHAPTER 6

Authentication

Authentication in txcas is implemented using a plugin system built into the core Twisted library known as Twisted
Cred. This system is actually composed of 3 distinct parts: a credential checker, a portal, and a user realm.

The credential checker is the component that accepts primary credentials and authenticates them. If successful, it
returns an avatarID that the user realm will use to produce an avatar.

Currently, txcas supports accepting simple username/password credentials as well as a client certificte checker (trust-
based authentication).

A number of credential checkers are available in Twisted Cred that support the username/password credential type.
txcas also includes support for the ldap_simple_bind credential checker via the ldaptor library.

6.1 Authentication Phases

It is possible for authentication to happen in one of two distinct phases. The phase that occurs first is the credential
requestor (or cred_requestor) phase. This happens when the user browser makes an HTTP GET request to the txcas
service /login endpoint. At this point, it is possible to attempt trust-based authentication before the login page is
rendered. If successful, a user will never see the login page. Username/password based authentication is not available
in this phase as the user has not ye had a chance to enter credentials.

The second phase is the credential acceptor (or cred_acceptor) phase. This phase happens when the user’s browser
makes an HTTP POST to the txcas service /login endpoint with a username and password. Both trust-based authen-
tication and username/password authentication may take place in this phase. If a trust-based credential checker is
configured to authenticate during this phase, it will attempt authentication first. If successful, the resulting avatar
ID is compared to the username that was submitted. If they do not match, authentication will fail. Otherwise, user-
name/password authentication will take place. Only if both forms of authentication succeed will authentication be
successful.

6.1.1 Typical Models For Trust-Based Authentication

Due to the fact that trust-based authentication can be configure to occur in either authentication phase, the user expe-
rience can vary.

In the Trust-Only model, trust based authentication is the only option. Only a trust-based credential checker is
configured. There is no username/password credential checker. The trust-based checker should be configured to occur
in the cred_requestor phase. A user will be authenticated if her browser has a valid certificate. If not, an error page
would be presented. The user would never see a login page.

The Trust-or-Login model, a trust-based checker is enabled in the cred_requestor phase. A username/password
checker is also enabled (this can only occur in the cred_acceptor phase). If the user’s browser has a valid certificate,

15

https://twistedmatrix.com/documents/14.0.0/core/howto/cred.html
https://twistedmatrix.com/documents/14.0.0/core/howto/cred.html
https://twistedmatrix.com/documents/14.0.0/core/howto/cred.html
https://github.com/twisted/ldaptor

txcas Documentation, Release 0.1

the user is authenticated transparently as in the “Trust-Only” model. If not, the user will be presented with the txcas
login view and be able to authenticate with a username/password.

In the Trust-and-Login (a kind of two factor authentication), the trust checker is enabled in the cred_acceptor phase
and a username/password checker is also enabled. In this case, authentication will only succeed if the user’s browser
has a valid certificate and she enters a valid username/password and the username she supplies matches the avatar ID
extracted from the certificate.

Configuration

An authentication method is selected via the cred_checker option in the PLUGINS section of the main configura-
tion file. Valid options are:

• memory: An in-memory password database suitable for demonstrations and development. Do not use for
production!

• file: A file containing username:password entries, one per line. This option should be followed by a colon
and the path to the file. E.g. file:/etc/cas/cas_users.passwd.

• unix: Attempts to authenticate against a user on the local UNIX-like system.

• ldap_simple_bind: Attempts a simple BIND against an LDAP server. The LDAP options can be con-
figured by appending a colon to this option and providing colon-separated key=value pairs or by configuring
options in the LDAP section of the main config file (the latter method is preferred).

The initial connection to the server may be unecrypted or encrypted depending on the client endpoint specifi-
cation used (tcp vs. ssl). Although an initial SSL connection is supported by many directories (the so-called
ldaps scheme) this type of connection is not included in the LDAP protocol RFCs. Instead, the LDAP protocol
supports STARTTLS, which establishes a TLS connection after the initial connection is made.

Note: StartTLS should not be used in conjunction with an SSL/TLS endpoint. Because it establishes a TLS
connection in response to a protocol request, the initial connection should occur on an unencrypted TCP end-
point.

A 2-stage BIND is used when checking credentials. In stage 1, an service DN and password are used to BIND
in order to search for the target entry. If the target entry is located, this authenticator attempts to BIND using the
password supplied at the CAS login.

The LDAP options are:

– endpointstr: A Twisted endpoint specification describing the client connection to the LDAP service.

– basedn

– binddn

– bindpw

– query_template: Defaults to (uid=%(username)s). The query template is a filter that will be used
by the LDAP service to identify the entry that it will attempt to BIND as using the supplied password.
The %(username)s part of the filter will be substituted with the provided username in order to produce the
final filter. The username will be escaped according to LDAP filter rules. The default template attempts to
locate an entry where the uid attribute matches the provided username. If no matching entry is located, or
if multiple matching entries are located, authentication will fail.

– start_tls: (Default 0). 1=use StartTLS. 0=don’t use StartTLS.

– start_tls_hostname: If the expected hostname of the directory service is not specified, the StartTLS
connection will be encrypted, but not verified. This will leave the connection vulnerable to man-in-the-
middle (MITM) style attacks.

16 Chapter 6. Authentication

http://en.wikipedia.org/wiki/STARTTLS
https://twistedmatrix.com/documents/current/core/howto/endpoints.html#clients

txcas Documentation, Release 0.1

– start_tls_cacert: Typically, this option is not required as the LDAP client will use CA certificates
based on an OS-specific trust mechanism (platform trust). However, if the directory you connect to uses an
internal CA certificate, you may specifically indicate a file in PEM format that contains the CA certificate
to trust when using StartTLS..

• client_cert: This form of authentication is trust-based and happens during a SSL handshake. In order for
this checker to succeed, the txcas service must run on a TLS endpoint. At least one CA certificate that the server
will trust for client certificates must be specified via the authorities option for the endpoint. Multiple
certificates may be concatenated in the authorities file, but the user experience may be degraded. A browser will
typically ask the user to select the certificate that ought to be presented to the server if multiple valid options are
available.

The options for this plugin are:

– subject_part: The part of the subject to extract, e.g. “CN”, or “emailAddress”.

– transform: A comma-separated list of ‘upper’, ‘lower’, ‘strip_domain’. One or more transforms are
applied to the extracted subject part..

– auth_when: The authentication phase when this checker is active. Valid options are ‘cred_requestor’
(default) and ‘cred_acceptor’.

If you have added additional plugins to your $TXCAS/twisted/plugins folder, additional option values may be
available. The plugin documentation should cover these. You can also list the available plugins with the following
command:

$ twistd -n cas --help-auth

6.1. Authentication Phases 17

txcas Documentation, Release 0.1

18 Chapter 6. Authentication

CHAPTER 7

User Realms

In txcas, a user realm is a component that translates an authenticated avatarID into an avatar that implements the
ICASUSer interface. The CAS service will use this object when determining the username and attributes that should
be sent to a service provider during a /serviceValidate or /proxyValidate request. A user realm object will implement
the Twisted Cred IRealm interface.

The separation of authentication and avatar generation allows avatars to be populated with attributes that are not
neccessarilly available via the authentication provider. For example, txcas could be configured to authenticate against
a file-based password database, but the avatar could be populated with attributes retrieved from a web-based service
or an LDAP directory.

A realm is enabled by setting the realm option of the PLUGINS section in the main configuration file. The realm
options included in txcas are:

• demo_realm: A realm created for demonstration purposes. The avatar is constructed directly from the
avatarID (username) provided and populated with phony attributes.

• basic_realm: This realm is very basic and suitable for situations where attribute release is not needed. In
this case, CAS acts as a pure authenticator, and service providers must base access control decisions entirely on
the avatar username.

• ldap_realm: This realm constructs the avatar by BINDing to a LDAP directory and retrieving a set of possible
attributes.

The LDAP options can be configured by appending a colon to this option and providing colon-separated
key=value pairs or by configuring options in the LDAP section of the main config file (the latter method is
preferred).

The initial connection to the server may be unecrypted or encrypted depending on the client endpoint specifi-
cation used (tcp vs. ssl). Although an initial SSL connection is supported by many directories (the so-called
ldaps scheme) this type of connection is not included in the LDAP protocol RFCs. Instead, the LDAP protocol
supports STARTTLS, which establishes a TLS connection after the initial connection is made.

Note: StartTLS should not be used in conjunction with an SSL/TLS endpoint. Because it establishes a TLS
connection in response to a protocol request, the initial connection should occur on an unencrypted TCP end-
point.

The LDAP options are:

– endpointstr: A Twisted endpoint specification describing the client connection to the LDAP service.

– basedn

– binddn

– bindpw

19

https://twistedmatrix.com/documents/14.0.0/core/howto/cred.html
http://en.wikipedia.org/wiki/STARTTLS
https://twistedmatrix.com/documents/current/core/howto/endpoints.html#clients

txcas Documentation, Release 0.1

– query_template: Defaults to (uid=%(username)s). The query template is a filter that will be used
by the LDAP service to identify the entry that it will attempt to BIND as using the supplied password.
The %(username)s part of the filter will be substituted with the provided username in order to produce the
final filter. The username will be escaped according to LDAP filter rules. The default template attempts to
locate an entry where the uid attribute matches the provided username. If no matching entry is located, or if
multiple matching entries are located, avatar generation will fail. txcas will report this as an authentication
failure to end users, though the logs should be helpful in determining the reason.

– attribs: A comma separated list of attributes that the realm should attempt to populate during avatar
generation.

– aliases: A comma separated list of aliases that is the same length as the attribs option. Each
attribute fetched will be mapped to the alias name indicated.

– service_based_attribs: 1 (True) or 0 (False). Defaults to False. If this option is selected and a
service manager plugin is used, the service entry for the current service will be used to look up a list of
attributes or a mapping of attributes-to-aliases. Whether a list or a mapping, the data should be located
under the attributes key of the service registry entry. If that key is not present for a particular entry the
attribs and aliases options above will be used to compute the attributes to add to the realm.

– start_tls: (Default 0). 1=use StartTLS. 0=don’t use StartTLS.

– start_tls_hostname: If the expected hostname of the directory service is not specified, the StartTLS
connection will be encrypted, but not verified. This will leave the connection vulnerable to man-in-the-
middle (MITM) style attacks.

– start_tls_cacert: Typically, this option is not required as the LDAP client will use CA certificates
based on an OS-specific trust mechanism (platform trust). However, if the directory you connect to uses an
internal CA certificate, you may specifically indicate a file in PEM format that contains the CA certificate
to trust when using StartTLS..

If you have added additional plugins to your $TXCAS/twisted/plugins folder, additional option values may be
available. The plugin documentation should cover these. You can also list the available plugins with the following
command:

$ twistd -n cas --help-realms

20 Chapter 7. User Realms

CHAPTER 8

Ticket Stores

Ticket stores in txcas are plugins used to keep track of the various tickets used by the CAS protocol. Ticket stores
generate tickets on request. A ticket store must track how long a ticket is valid and expire it appropriately. A ticket
store is also responsible for validating tickets, and making Single Log Out (SLO) callbacks to services.

A ticket_store is enabled by setting the ticket_store option of the PLUGINS section in the main configuration
file. The ticket_store options included in txcas are:

• memory_ticket_store: This ticket store manages tickets entirely in the memory allocated to the txcas
process. It has the advantage of being quite fast when it comes to ticket creation, modification, or expiration.
There is no network latency. However, this ticket store is limited in that it is not persistant. If the process is
stopped and restarted, all tickets that were previously in the ticket store are lost. Also, for situations where CAS
servers span multiple nodes, this type of ticket store cannot be shared across process or server boundries.

• couchdb_ticket_store: This ticket store manages tickets in an external CouchDB database. This ticket
store may have network latency issues associated with it that are not present in an in-memory ticket store.
However, tickets stored “in the couch” are persistant. Because the ticket storage is external, tickets can be
shared across multiple nodes. Also, CouchDB’s master-master replication capabilites make this storage worthy
of consideration for high availability scenarios. Projects like CouchDB Lounge or Big Couch are certainly worth
a look if scalability is a concern.

Because CouchDB is written to be operated completely with a RESTful API, no special database drivers are
required. It is also a good fit with the Twisted asynchronous I/O model.

The CouchDB options can be configured by appending a colon to this option and providing colon-separated
key=value pairs or by configuring options in the CouchDB section of the main config file (the latter method is
preferred).

The CouchDB options are:

– host: The database server hostname or IP address.

– port: The port that CouchDB listens on.

– db: The name of the database (e.g. “cas_tickets”).

– user: The username to connect to the database as.

– passwd: The password to use when connecting to the database.

– https: 1 (True) or 0 (False). When connecting to the database, use HTTPS.

– verify_cert: 1 (True) or 0 (False). When connecting to the database, verify its X509 cert. It is useful
to set this option to False during development if using a self-signed cert.

21

http://couchdb.apache.org/
http://tilgovi.github.io/couchdb-lounge/
http://bigcouch.cloudant.com/
http://krondo.com/?p=1209

txcas Documentation, Release 0.1

8.1 Options Common to All Ticket Stores

All ticket stores must support specific options:

• lt_lifespan: The time in seconds before a Login Ticket expires.

• st_lifespan: The time in seconds before a Service Ticket expires.

• pt_lifespan: The time in seconds before a Proxy Ticket expires.

• pgt_lifespan: The time in seconds before a Proxy Granting Ticket expires.

• tgt_lifespan: The time in seconds before a Ticket Granting Ticket expires.

• ticket_size: The size of a ticket (in characters) generated by the ticket store.

Note: Ticket lifespan countdowns for multi-use tickets (PGT s and TGT s) may be reset if a ticket is used. Some
tickets have their lifespans connected to their parent tickets as per the CAS protocol and should not outlive their parent
tickets.

8.2 Interaction With Service Managers

If a service manager is enabled in the txcas service, the ticket store will use it to determine if the CAS server will
authenticate for a particular service.

22 Chapter 8. Ticket Stores

CHAPTER 9

Service Managers

Service managers are plugin components within txcas that determine whether CAS will validate tickets for a particular
service provider. Service managers also determine if services that CAS will validate will participate in CAS SSO
sessions. If a service manager determines that a given service will not participate in SSO, then primary credentials
will always be requested via the CAS login whenever authentication is requested for that service.

Service managers are free to provide additional information about services. This information may be consumed by a
view provider plugin, if one is enabled.

Service managers are enabled by setting the service_manager option in the PLUGINS section of the main con-
figuration file. Valid settings for this option include:

• json_service_manager: This service manager stores information in JSON format in a file accessible to the txcas
service. The file is read, parsed, and represented in memory. If the file is changed, the service manager will
detect the change and reload the file contents.

The options for this plugin can be configured by appending a colon to the option name and providing colon-
separated key=value pairs or by configuring options in the JSONServiceManager section of the main config file
(the latter method is preferred).

The JSONServiceManager options are:

– path: The path to the service registry JSON file.

The format of the the service registry is a list of entries, where each entry is a mapping of key-value pairs. The
following keys have special meanings to the service manager:

– name: The name of the service. Used mainly for identification during logging.

– scheme: One of http, https, or *.

– netloc: A value composed of a host or domain pattern, and optionally followed by a colon and a port
number. If the port number is omitted, it is inferred by the actual scheme of the service (443 for https, 80
for http). A host/domain pattern is in dotted notation. Each component of the name may be replaced by an
asterisk (*) indicating that component is a wildcard match. If the first component is a double asterisk, that
means that any hostname that ends with the same pattern will match.

– path: The path part of the service URI.

– child_paths: true or false. whether to include child paths of the path component as matches. False indicates
an exact path match is required.

– required_params: A mapping of required parameters in key:list-of-values format or null. If the required
parameters and values are not present, the service will not match.

– SSO: true or false. If false, CAS will authenticate the service, but it will request primary credentials each
time. The service will not participate in SSO.

23

txcas Documentation, Release 0.1

24 Chapter 9. Service Managers

CHAPTER 10

View Providers

View provider plugins render the user facing web pages in txcas. These include:

• The login page

• The successful login to SSO page

• The logout page

• The invalid service page

• The error page

• The resource not found page

If a service manager is enabled, a reference to it is given to a view provider so that a service entry is made available to
the login page and invalid service views.

A view provider does not have to provide every view. If it does not provide a particular view, the default txcas view
will be presented.

A view provider is enabled by setting the view_provider option in the PLUGINS section of the main configuration
file. Valid options include:

• jinja2_view_provider: This view provider renders HTML pages from Jinja2 templates. The request object is
made available to all templates. The following names are made available to each view:

– login page

* login_ticket: A login ticket that must be POSTed when presenting credentials.

* service: The service requesting authentication. May be an empty string, indicating the user is trying
to log into a CAS SSO session without logging into a service.

* service_entry: The complete service entry from the service manager.

* failed: True / False, indicates if previously submitted credentials failed.

* request

– successful login

* avatar: The avatar provided by the user realm.

* request

– logout

* request

– invalid service

25

http://jinja.pocoo.org/docs/

txcas Documentation, Release 0.1

* service: The service requesting authentication.

* service_entry: The complete service entry from the service manager.

* request

– error

* err: The failure object.

* request

– not found

* request

The plugin options can be configured by appending a colon to this option and providing colon-separated
key=value pairs or by configuring options in the Jinja2ViewProvider section of the main config file (the lat-
ter method is preferred).

The Jinja2ViewProvider options are:

– template_folder: The path to the folder that will contain the templates. The templates should be
named:

* login.jinja2

* login_success.jinja2

* logout.jinja2

* invalid_service.jinja2

* error_5xx.jinja2

* not_found.jinja2

26 Chapter 10. View Providers

CHAPTER 11

Plugin Troubleshooting

If you install a plugin but don’t see it listed as a valid option, you can try running the ./plugin_test.py script
from the main project folder. This script is a simple diagnostic that lists all available plugins of the types relevant to
txcas. Pay special attention to any error output produced, as it may indicate some kind of problem with the plugin
installation.

27

txcas Documentation, Release 0.1

28 Chapter 11. Plugin Troubleshooting

CHAPTER 12

Development

The txcas software makes heavy use of the Twisted Plugin System. The core software implements the web interactions
and delegates various operations to plugins.

12.1 Basic File Layout and Script Requirements

Plugin intergration code should be located in $PROJECT/twisted/plugins in a Python
script file. The script should assign global variables to instances of a class or classes that im-
plement the factory interface for the plugin you are developing. For example, a file called
/somewhere/on/your/PYTHONPATH/myspecialticketstore.py might look something like:

from txcas.interface import ITicketStore, ITicketStoreFactory
from twisted.plugin import IPlugin
from zope.interface import implements

class WickedCoolTicketStoreFactory(object):
"""
A factory for creating wicked-cool ticket stores!
"""
implements(IPlugin, ITicketStoreFactory)

tag = "wicked_cool_ticket_store"
opt_help = "I am detailed help printed on the command line."
opt_usage = "I am the brief help printed on the command line."

def generateTicketStore(self, argstring=""):
"""
This method returns an object that implements ITicketStore.
It is configured via the string passed to this function, but it can
also pull settings out of the txcas configuration file. The
settings passed in should be given preference to those in the
config file.
"""
Implementation is something you would need to code.
...
return a_shiny_new_ticket_store

The file $TXCAS_ROOT/twisted/plugins/myspecialticketstoreplugin.py should contain some-
thing like:

29

http://twistedmatrix.com/documents/current/core/howto/plugin.html

txcas Documentation, Release 0.1

from myspecialticketstore import WicketCoolTicketStoreFactory
import txcas.settings

aplugin = WickedCoolTicketStoreFactory()

Note: In the above example, the script that actually implements the WickedCoolTicketStoreFactory does
not need to reside in the txcas project folder. It can be located anywhere on your PYTHONPATH.

The code that instantiates the plugin factory should reside in the $TXCAS_ROOT/twisted/plugins folder.

The reason that factories are used is that many plugins tend to need some kind of configuration. Factories can be
created with no configuration, and they can accept command line arguments that can be used in the configuration
process.

If you look at the source code in txcas/interface.py, you will see that for each plugin type, there is an interface
for a factory and an interface for the plugin the factory produces.

For more information on writing Twisted plugins, see Writing a twistd Plugin

12.2 Kinds of Plugins

All unqualified interface references below are understood to belong to the txcas.interface module.

Credential checkers and user realms are are components of Twisted Cred, Twisted’s pluggable authentica-
tion system. Credential checkers authenticate credentials presented. User realms create avatar s for au-
thenticated users. Currently, txcas supports credential checkers that consume credentials that implement the
twisted.cred.credentials.IUsernamePassword interface.

Credential checker factories should implement the twisted.cred.strcred.ICheckerFactory interface. Credential checkers
should implement the twisted.cred.checkers.ICredentialsChecker interface. User realm factories should implement the
IRealmFactory interface. User realms should implement the twisted.cred.portal.IRealm interface. Avatars produced
by a realm should implement the ICASUser interface.

Some credential checkers are able to operate based on information that is present in either of the ‘cred_requestor’ or the
‘cred_acceptor’ authentication phases. These plugins should implement the ICASAuthWhen interface to communicate
to the server the phase in which the plugin should be active.

Ticket stores manage the tickets used by CAS. They track ticket lifetimes, validate them, and expire them. Ticket
stores may need to work with service managers to determine if a ticket ought to be created for a service provider, or if
a service provider participates in SSO.

Ticket store factories should implement the ITicketStoreFactory interface. Ticket stores should implement ITicketStore.

Service managers are used to decide whether a service provider is allowed to authenticate with a particular txcas
instance, and whether or not a service provider will participate in SSO. Without a service manager, txcas runs “open”,
meaning that any service provider may authenticate with it.

Service manager factories should implement IServiceManagerFactory. Service managers should implement IService-
Manager.

Service managers may also provide additional service entry meta-data that other plugins can use. This meta-data may
be used to customize views or activate decision making logic in other components (e.g. the attributes included in a
realm could be tailored to specific services). If a plugin wants to receive a reference to the service manager, it should
implement the IServiceManagerAcceptor interface.

View providers are used to customize the web pages presented by the txcas service. This kind of customization makes
it possible to present a specific theme or appearance that meshes with an organizational web site.

30 Chapter 12. Development

https://twistedmatrix.com/documents/current/core/howto/tap.html
https://twistedmatrix.com/documents/current/core/howto/cred.html
https://twistedmatrix.com/documents/current/api/twisted.cred.credentials.IUsernamePassword.html
https://twistedmatrix.com/documents/current/api/twisted.cred.strcred.ICheckerFactory.html
https://twistedmatrix.com/documents/current/api/twisted.cred.checkers.ICredentialsChecker.html
https://twistedmatrix.com/documents/current/api/twisted.cred.portal.IRealm.html

txcas Documentation, Release 0.1

View provider factories should implement IViewProviderFactory. View providers should implement IViewProvider. A
view provider’s provideView() method should return a callable if it provides a particular view or None if it does
not.

12.3 Unit Tests

txcas comes with its own unit tests. To run the tests:

$ trial txcas/test/test_server.py

You should see a number of test cases with statuses for each test: SKIPPED, FAIL or OK. Tests that are skipped
typically require some kind of middleware to be running that is difficult to emulate for the test. An example would be
the CouchDB ticket store. These tests tend to be slow and require configuration information to be passed to the test
script. To enable these tests, copy the file txcas/test/tests.cfg.example to txcas/test/tests.cfg.
Edit the Tests section to enable the optional tests. Provide any required settings for the middleware in the appropriate
section and re-run the tests.

When developing your own plugins, it is recommended you develop your own unit tests. For more information on unit
testing with Twisted, see the Trial documentation and its associated howto.

12.3. Unit Tests 31

http://twistedmatrix.com/trac/wiki/TwistedTrial
http://twistedmatrix.com/documents/current/core/howto/trial.html

txcas Documentation, Release 0.1

32 Chapter 12. Development

CHAPTER 13

Glossary

AVATAR A representation of an authenticated user. In txcas, an avatar must implement the interface ICASUSer. The
avatar will have a username and possibly one or more attributes associated with it.

AVATAR ID An identifier that can be used to uniquely represent an avatar. A username submitted from a login form
could be an example of an avatar ID.

PGT Proxy Granting Ticket. A ticket obtained by a service provider that allows it to request proxt tickets from CAS.
The proxy tickets can later be used to request services from other service providers that participate in the CAS
session.

SLO Single Log-out. When a user is logged out of a CAS SSO session, all CAS clients that authenticated via the
session are notified of the session termination.

See https://github.com/Jasig/cas/blob/master/cas-server-protocol/3.0/cas_protocol_3_0.md#233-single-logout
for details.

SSO Single Sign-On. The ability to login once to a service authentication broker and not have to present primary
credentials to log into same or different participating services, often for a specific period of time.

TAC FILE A Twisted Application Configuration file. A regular Python file used to configure a Twisted Application.
Endpoint settings (interface, port, SSL settings) are commonly configured in this type of file.

TGT Ticket Granting Ticket. A ticket issued when a CAS session is started by providing primary credentials. The
TGT is then used to request service tickets that a service provider can validate with CAS to prove that the ticket
presenter has been authenticated by CAS.

TWO FACTOR AUTHENTICATION Authentication based on two independent authentication factors. Fac-
tors may include something known to a user, something a user has, or something a user is. See
http://en.wikipedia.org/wiki/Multi-factor_authentication for more information.

33

https://github.com/Jasig/cas/blob/master/cas-server-protocol/3.0/cas_protocol_3_0.md#233-single-logout
http://en.wikipedia.org/wiki/Multi-factor_authentication

txcas Documentation, Release 0.1

34 Chapter 13. Glossary

CHAPTER 14

Indices and tables

• genindex

• search

35

txcas Documentation, Release 0.1

36 Chapter 14. Indices and tables

Index

A
AVATAR, 33
AVATAR ID, 33

E
environment variable

PYTHONPATH, 30

P
PGT, 33
PYTHONPATH, 30

S
SLO, 33
SSO, 33

T
TAC FILE, 33
TGT, 33
TWO FACTOR AUTHENTICATION, 33

37

	Overview
	Features
	Why Another CAS Server?

	Installation
	Clone the source from GitHub
	Configure the Python environment
	Create configuration files
	Start the service

	Demonstration
	Take The CAS Tour
	Experimenting With the Demonstration

	Configuration
	CAS
	Plugins
	Sections Specific to Plugins

	Endpoints
	TLS Endpoint Options

	Authentication
	Authentication Phases

	User Realms
	Ticket Stores
	Options Common to All Ticket Stores
	Interaction With Service Managers

	Service Managers
	View Providers
	Plugin Troubleshooting
	Development
	Basic File Layout and Script Requirements
	Kinds of Plugins
	Unit Tests

	Glossary
	Indices and tables

